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Thermal quantum electrodynamics of nonrelativistic charged fluids
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The theory relevant to the study of matter in equilibrium with the radiation field is thermal quantum
electrodynamics (TQED). We present a formulation of the theory, suitable for nonrelativistic fluids, based on
a joint functional integral representation of matter and field variables. In this formalism cluster expansion
techniques of classical statistical mechanics become operative. They provide an alternative to the usual Feyn-
man diagrammatics in many-body problems, which is not perturbative with respect to the coupling constant. As
an application we show that the effective Coulomb interaction between quantum charges is partially screened
by thermalized photons at large distances. More precisely one observes an exact cancellation of the dipolar
electric part of the interaction, so that the asymptotic particle density correlation is now determined by rela-
tivistic effects. It still has the 7~® decay typical for quantum charges, but with an amplitude strongly reduced by

a relativistic factor.
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I. INTRODUCTION

A precise and complete description of the equilibrium
states of nonrelativistic quantum charges interacting via the
static Coulomb potential has been thoroughly developed in
recent years in the low-density regime [1-5]. This descrip-
tion relies on the use of the Feynman-Kac path integral rep-
resentation of the thermal Gibbs weight, allowing for a
classical-like analysis of thermodynamic potentials and par-
ticle correlations. Essentially, quantum point charges are
mapped onto a set of closed Brownian paths (loops) whose
random shapes account for the quantum fluctuations. Tech-
niques of classical statistical mechanics become available in
the auxiliary phase space of loops, in particular the method
of cluster expansion (Mayer graphs). The latter is particu-
larly suited to calculations in dilute systems, where the small
parameter is the density.

Low-density expansions of the pressure are performed up
to order p°’3 [1]; exact asymptotics of particle correlations
are determined in [2]. Phases with atomic or molecular re-
combination can also be conveniently studied—e.g., the
equation of state [3] and the van der Waals forces [4] in the
Saha regime, as well as the dielectric response of an atomic
gas [5] (see [6,7] for reviews and additional references).
However, none of these works take into account the coupling
of the charges to the radiation field which is responsible for
both effective magnetic interactions (Lorentz forces) and re-
tardation effects. The purpose of this paper is to show how
the above formalism and techniques can be generalized when
matter is thermalized with the quantized electromagnetic
field. It is an extension of [8] (hereafter referred to as I)
where the field was considered as classical. When the field is
quantized in the transverse gauge, it is appropriate to repre-
sent the Gibbs weight by means of the bosonic functional
integral based on the coherent-state representation of photon
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states. In this way the quantum field is mapped onto a set of
classical-like random electromagnetic fields with (imaginary)
time-dependent amplitudes. Since the energy of the free field
is quadratic in the field amplitudes, the latter are distributed
with Gaussian statistics. At this stage, quantum charges can,
as in [1-5], be put into correspondence with Brownian
charged loops with the aid of the Feynman-Kac-It6 formula.
The coupling to the field appears as the flux of the magnetic
field across the loops. Thus thermal quantum electrodynam-
ics (TQED) becomes isomorphic to a system of random
charged wires (the loops) experiencing a random magnetic
field. The calculation rules are entirely defined by the cova-
riances of the processes associated with the loops and the
field amplitudes, together with the use of Wick’s theorem. In
this setting, the cluster (Mayer or virial) expansions of clas-
sical statistical mechanics can again be put to work, provid-
ing an alternative to the standard TQED Feynman graph cal-
culations, which is not perturbative with respect to the
coupling constant (namely, the electric charge). The method
is particularly adapted to study equilibrium phases of plas-
mas and recombination processes in the presence of the elec-
tromagnetic field at moderate density.

In Sec. II we describe the actual system consisting of
nonrelativistic charges interacting with the photon field. In
order to make sense mathematically and physically, the
model requires a high-energy cutoff defined by ﬁwkm:n_wz
to eliminate photons that are more energetic than the rest
mass energy of a particle of typical mass m ( is the Planck
constant, c is the speed of light, and wy=ck is the photon
frequency for the wave number k,k=|k|). This gives a typi-
cal wave vector cutoff k.,=mc/h with corresponding wave-
length N\, =%/mc (see, e.g., [9], Chap. 3, for a discussion of
this point). High-energy processes, such as pair creation or
annihilation, demand the use of the relativistic wave equation
(Klein-Gordon or Dirac). They are not taken into account in
this model whose predictions therefore only make sense for
distances >\ .

The construction of the relevant functional representations
are recalled in Sec. III for the field and in Sec. IV for the
particles. Since the subject is well developed elsewhere, we
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merely present the main structure in a perspective adapted to
our purposes (see references in Sec. II). The thermalized
photon field involves the typical energy ﬁwk =ficky=kgT
="', with corresponding wavelength Aph= Bﬁc called the
thermal length of the photon (7 is the temperature and kp the
Boltzmann constant). On the other hand, the mean kinetic
energy of a nonrelativistic particle, € —(hkmat)z/ 2m=kgT,
defines the de Broglie thermal wavelength of the particle
e C

Ama=hVB/m. To be consistent with nonrelativistic particle
motion we must impose that the thermal energy imparted to
the particle in the form of kinetic energy be much lower than
its rest mass energy—namely, Ekmm:kBT< mc>—implying

A'n’ld.
New = /_t < Npat <A ph = \Bmc N mats (1)
\ Bric?

where Biic?>1 is a dimensionless relativistic parameter.
Therefore, when the field is quantized, we have to distin-
guish two different regimes at large distance r:

)\mat < )\ph <r (2)

or
Nanat < 7 < Npp- 3)

In addition to the quantum lengths, there are typical classical
lengths such as the interparticle distance a=p~'" (p the den-
sity) and the Debye screening length \,. The latter do not
enter explicitly in our subsequent analysis because the re-
gime (2) of main interest in this paper deals with distances r
far beyond \,,,;, a, and \p. For instance, in an electrolyte the
lengths N, @, and N\p are of the same order of magnitude
(~107°-10" m) but they are all much smaller than
~107°> m (see concluding remarks). We shall only require
that the density be low enough for the system to be in a fluid
phase so that we can apply the standard methods of statistical
mechanics (cluster expansions).

In Sec. V, we determine the effective potential between
loops arising when the field degrees of freedom have been
integrated out. This can easily be done by a Gaussian inte-
gration, as in paper I. Indeed, a simple structure shows up
from the fact that in the functional integral representation the
coupling of matter to the field amplitudes occurs linearly in a
phase factor (in contrast to the original quantum Hamiltonian
which has a coupling quadratic in the creation and annihila-
tion operators). Then the whole effect of the field is con-
tained in an effective potential depending on Ay, and A,
that can be viewed as a current-current interaction between
pairs of loops [formula (66) in Sec. V].

We use these results in Sec. VI to find the behavior of the
particle correlations in both regimes (2) and (3). Equipped
with the Coulomb potential and this effective field-induced
potential, all standard rules of classical statistical mechanics
can be applied to the calculation of particle correlations
(some care has to be exercised with the computation rules for
stochastic integrals; see Appendix A). It is seen that the
large-distance behavior of the correlation is determined by
the square of dipole fluctuations, the total dipole of a loop
having a part due to its charge and a part due to its current.
This leads to a generic % decay of the correlation. Now a
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striking phenomenon occurs in case (2) above: namely, the
screening of the dominant part of the Coulomb interaction by
thermalized photons. When r> )\Ph, the transverse field has a
contribution that exactly cancels the dipolar electric part of
the loop fluctuations. Only current fluctuations of the loops
are left, which cannot be screened. In this regime, the corre-
lation still has a r® decay, but with a relativistic prefactor
(Binc*) 2.

In paper I, we have argued that large distances are con-
trolled by small wave numbers of the radiation field and the
latter can therefore be treated classically. This apparently
sensible argument proves to be incorrect in the sense that it
does not predict the aforesaid Coulombic cancellation which
results from a subtle conspiracy between the Planck con-
stants of field and matter. It might be inconsistent, in the
transverse gauge, to make a classical approximation for the
radiation part of the field only. Approximations should be
made in a fully gauge-invariant manner. Note, however, that
once the cancellation has been taken into account, the theory
of paper I correctly predicts the remaining correlation tail
induced by the current fluctuations.

In the regime (3), the radiation field has essentially no
incidence on the decay of the particle correlations and one
recovers the purely Coulombic tail due to electrical dipole
fluctuations as the dominant contribution, plus terms vanish-
ing as r/N,;,—0. More generally, all results of [1-5] are
expected to remain valid in this regime up to tiny relativistic
corrections.

Other applications for which the present formalism will
be relevant are suggested in the concluding remarks.

II. THE MODEL

The nonrelativistic QED model consists of nonrelativistic
quantum charges (electrons, nuclei, ions) with masses m,,
and charges e,. They obey the appropriate Bose or Fermi
statistics and interact with the quantum electromagnetic field,
the latter being relativistic by nature. The index vy labels the
S different species and runs from 1 to S. The particles are
confined in a box A € R? of linear size L whereas the field
itself is enclosed in a large box K with sides of length R,
R>L. The Hamiltonian of the total finite-volume system
reads in Gaussian units

2
N { ?A(r,)] N o N
Yi ‘yf
Hir= 2 + 2 + 2 Vex(¥iT2)

i1 2m,, eyl R J e
+ HM, 4)

The sums run on all particles with position r;, momentum p;,
and species index v;, i=1,...,N, and V,,(y;,r;) comprises a
possible external potential plus a steep wall potential that
confines the particles in A. The latter can eventually be taken
infinitely steep at the wall’s position, implying Dirichlet
boundary conditions on the particle wave functions at the
boundaries of A.

The electromagnetic field is written in the Coulomb (or
transverse) gauge so that the vector potential A(r) is diver-
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gence free and H is the Hamiltonian of the free radiation
field. We impose periodic boundary conditions on the faces
of the large box K. Expanding A(r) and the free photon

ad . 2mn, 2mn, 2mn,
energy HZ® in the plane-wave modes k=(T’ R )

gives

4ahc*\ V2 e . .
A(r)= ( 3 ) > gk) /&(alixe_lk'r + aye™"),
R K\ V2w
(5)
Hgad = 2 ﬁwkalf()\ak)w (6)
K\

where ], and ay, are the creation and annihilation operators
for photons in the mode (kA) with commutation relations
[ak)\,alt,}\,]= S\ Okk’» €y (N=1,2) are two unit polarization
vectors orthogonal to Kk, and wy=ck, k=|k|. In Eq. (5), g(k)
is a real spherically symmetric smooth form factor that takes
care of the ultraviolet divergences. It obeys g(0)=1 and is
supposed to decay rapidly beyond the characteristic wave
number k., =mc/h. Note that in Eq. (4) we have included
neither the Pauli coupling —u-B(r) of the electronic spin
with the magnetic field B(r)=VAA(r) [u=(ehi/dmc)o is
the magnetic moment of the electron, and o are the Pauli
matrices] nor the nuclear hyperfine interaction (see com-
ments in the concluding remarks). It is known that the
Hamiltonian (4) is H stable [10] for a finite ultraviolet cutoff
ke <o°; namely, H;  possesses an extensive lower bound
proportional to the total number of particles (for a review of
H stability in nonrelativistic QED, see [11]).

We are interested in the situation in which matter and
photons are in thermal equilibrium at the same temperature
T. The total partition function associated with Eq. (4),

ZL,R = Tre_'BHL’R, (7)

is obtained by carrying out the trace Tr=Tr,,Tr,4 of the
total Gibbs weight over particles’ and field’s degrees of free-
dom: namely, over the particle wave functions with appro-
priate quantum statistics and Fock states of the photons. The
corresponding free energy density in the thermodynamic
limit will be defined by extending to infinity first the field
region K and then the box |A| containing the charges. Thus
the excess free energy relative to that of the free radiation
field is

1
f==ksT lim = lim (InZ, x - In Z§'Y), (8)
L—x

R—

where ZB?%:Trmd exp(—BH{") is the partition function of the
free field. A lower bound for f has been established in [12],
but at the moment, to our knowledge, a complete proof of the
existence of the thermodynamic limit has not yet been pro-
vided. Nevertheless, we shall assume that the quantities of
interest in this paper have a well-behaved thermodynamic
limit.

As in I, we shall be concerned in the sequel with the
partial average
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_ Tr,,qe PHLR

[e BHL’R]mal = 13275 (9)
0,R

giving the (non-normalized) statistical distribution of matter

obtained by averaging on the degrees of freedom of the ra-

diation field. The corresponding normalized reduced density

matrix is'

-BH, —BH,
Trrade PHLR [e A L’R]mat

ZL,R Trmat[e_BHL’R]mat )

PLR= (10)

It will be convenient to single out in H; p the free radia-
tion part, writing

Hp,=Hy+H, (11)
2
ey,
N |:pi__A(ri)]
c
HA=2 + Upot(rl?yl’ ~~~,rN,')/N)7
il 2m7,_
(12)
where
N, N
Yi Vi
Upol(rlv Yis - 5InNs yN) = E + E Vexl( 7i7ri)
i<j | i~ Ll =1
(13)

is the total potential energy.

III. FUNCTIONAL INTEGRAL REPRESENTATION
OF THE FIELD

If the field is treated classically (namely, the creation
and annihilation operators are replaced by c¢-number
amplitudes), it is immediately seen that the free field distri-
bution factorizes in the total Gibbs weight as exp(—BHp )
=exp(—,8Hf)ad)exp(—,8H ). Thus the partial trace (9) reduces
to integrals with a Gaussian weight since the free radiation
part exp(—BH{) is Gaussian in the field amplitudes, a fact
that was exploited in 1.

If the field is quantized, it is first of all necessary to rep-
resent the electromagnetic field by ¢ functions in the total
Gibbs weight exp(—BHy ;). This can be achieved by means
of the standard functional integral for bosonic quantum fields
[13,14]. We briefly recall its construction. First, one consid-
ers the coherent states associated with the field modes:

“ T oym
g = > %m) = e“kx“ltxloh
m=0 :

ak)\|a’k)\> = ak)\|ak)\>-

(14)

They have scalar products

’

.
(] agryr) = eMaen, (15)

and the closure relation reads

'Here the notation is slightly different from paper I where pj g,
formula (5) in paper I, designates the field-averaged quantity (9).
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d2
f ﬂf‘“““ﬂ%xakxl =1 (16)
T

d2
We denote a={ak)\}k>\, a/>=Hk)\|ak>\>, da=Hk7\ ik)\, aa’

= AoXy» €tc., and introduce the infinite product repre-
sentation e 'BH—hmMﬂw(l ﬁH)M, where H=H| zg=H\

+H> is the total Hamiltonian operator (11). Using this rep-
resentation and inserting M —1 closure relations one can

write the following coherent-state matrix element as

M-1
(ale™PH|a@) = lim [ 11 fdaqe‘“l*“l]
M—oo| =1
H)|aM—l>"'<al|(l —ﬁH)

><|al_]>---(a]|(l—AE4H>|a>. (17)

X <a’|(l -

As a first step we consider the partial coherent-state matrix
element <a,| [1-( H] | a_ 1 , which is still an operator act-
ing on the Hilbert space of the particle states. Its evaluation
is achieved by putting H in normal order. Using Eq. (15), this
yields

<az|(1 -

where H(e,, @,_;) depends on the complex amplitudes e ac-
cording to the normal order form of H. From Egs. (11) and
(12), one finds

@ ﬁ *
H>|a/,_1>=e 1 l-l(l—MH(al,al_l) ,

(18)

* * d *
H(a;,ap ) =Hy(a;, ;) + Dy + H{)a (a),a)_y),

2
e%‘ %
N [p,- - ?A(r[, Q ,a1_1)]

RCREDS 5
i=1 m

Vi

+ Upod(T1 715 5T ). (19)

where the vector potential A(r;, af, «;_,) has the same form
as in Eq. (5) with the operators aj, ,dy, replaced by the com-
plex amplitudes a, 1o @1 1ov and likewise for HE(a; , a_y).
The constant

2
Dy=3d,, dy.=——< Eg“‘)>, 20)
i=1

arises when putting [A(r;)]?> in normal order. Inserting Eq.
(18) into Eq. (17) yields
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M-1
(ae|e_BH|a>= lim [ H fdale_aj(al_all)]

M—»| =1

X (1 - gH(a*,aM_l)> e

X(l - 5H(a7,a,_1)> (1 - EH(CYT,CV))-
(1)

One introduces the formal functional integral as usual by
interpreting a,,k)\zak)\( L) as the value at T—j of a closed
trajectory ¢y, (7) in the complex plane, ay, (0)=ay,(1)=ay,.
The parameter 7, 0<r7=<1, is a dimensionless imaginary
time. In the limit M — o the product of infinitesimal evolu-
tions in Eq. (21) tends to the time-ordered propagator

1
e—ﬂDNT|:exp<—IBJ dTH(a*(T+ 7]),(1/(7'))):|
0

1
- e‘ﬁDNexp<— ’Bf dTH(a(7+ n),a(T)))
0

1
X7—[CXP<— ,Bf drH (@ (7+ 77),05(7)))},
0

7— 0" (22)

The imaginary time ordering 7 is necessary because
although the field amplitudes a(7) are now ¢ functions; the
H(a'(7+ 1), a(7)) are still operators acting on the space of
particle wave functions, and therefore they do not com-
mute for different times. However, the free field part
Hff‘d(ar*(7+ 7),a(7)) commutes with the matter-dependent
part Hy(a'(7+ %), a(7)), Eq. (19), and can be factorized out
of the 7 product according to the second line of Eq. (22). The
n— 0" prescription means that, as a result of the normal
order, the amplitudes corresponding to the creation operators
a(7+ 7) have to be evaluated in Eq. (22) at times infinitesi-
mally larger than those corresponding to the annihilation op-
erators a(7) [see Eq. (21)]. Finally, Eq. (21) can be written in
the condensed form of a path integral:

a(l)=a
| et

(ale ™| @) = PPV lim
a(0)=a

7—0,4

1
Xexp{—f ( (T)_a'(T)+,8Hdd(a(T))>:|

1
X T[exp(— Bf dTHA(a(T))):|} , (23)
0 7

where the bracket {---},, indicates that the amplitudes a" in
Eq. (23) have to be evaluated at the time 7+ 7. The partial
Gibbs distribution (9) is obtained by integrating the matrix
element (23) on de and then dividing it by the partition
function of the free field:
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[eFlLr] = f da e (a)ePH| ). (24)

rad
ZOR

More generally, the factor
: J
exp{—f d7'<af*(7')(9—a(7') +,8Hf)ad(a(7'))>} (25)
0 7-

in Eq. (23) provides a Gaussian (free) weight on the space of
time-dependent complex field amplitudes a(7). If F(a(-)) is
a functional of these amplitudes, we will denote its average
with respect to the distribution (25) by

1
(F(a(-)))yaq = % lim {fDaexp|:—f dT(a*(T)ﬂia(T)
0 T

0R 70+

+BH6ad(a(T))>}F(a(-))} : (26)
n

Here the integral runs over all possible closed paths, setting

[Da- - =[da e‘l"‘lzfzg(l);ZZd[a(-)]m. It is well known that

this Gaussian integral is characterized by the covariance [13]
(o (D g (7 = S B Clk, 7= 7).
(@ (Mg (7)) = (g (D (P g =0, (27)
with

Clk,r—17) = e‘Bﬁ“’k(T_T,)[H(T— )+ 1) + 0(7" — Dny],

TF T, (28)
Ck,0)=ny, 7=17, (29)

and
ny = (ePhx — 1)7! (30)

is the Planck distribution (6 is the Heaviside step function).
The function C(k,7—17") is discontinuous at 7=7" with the
value C(k,0)=ny as a consequence of the normal order pre-
scription p—0,.

Functional integrals (26) of the paths e(7) are in principle
entirely determined by application of Wick’s theorem and
use of the covariance (27). In particular, using the represen-
tation (26), the effective partial thermal weight (9) of matter
when the field degrees of freedom have been traced out can
now be written as

1
[e_:BHL,R]mm = g_BDN<7-|:eXp(— ,BJ dTHA(a’(T))> :|> :
0 rad

31)

This will be the starting point of our investigation of the
particle correlations in the presence of the field in Sec. V.

IV. FUNCTIONAL REPRESENTATION
OF THE PARTICLES

We now come to the functional integral representation of
the matter degrees of freedom. One notes that the operator
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Tl Pl (])dTHA(“(Tm} in Eq. (31) is the propagator on the space
of particle wave functions associated to the time-dependent
Hamiltonian H,(a(7)) where the vector potential has been
replaced by its nonoperatorial classical form

2

c 1/2
) > g(k)

3
R kX

Alr.a(7) = (4

Ckn
X—==[ey\(7)e
V2w

KT (D], (32)

The time dependence is introduced by the amplitudes oy, (7),
which are random functions distributed by the Gaussian
weight (25) of the bosonic functional integral. However, for
a fixed function a(7), 0<7<1, Hy(a(7)) can be viewed as
the Hamiltonian of the particle system submitted to the ex-
ternal vector potential (32). In this situation one can apply
the Feynman-Kac-It6 formula [16] to represent the configu-
rational matrix element of Z{el-BlodmHa(@(]}

For a single particle of mass m and charge e in a scalar
potential V., (r) and time-dependent vector potential A(r,s),
we first recall that this matrix element reads [15-17]

e 2
{P— —A(r, T)}
C

1
(r|Texp| - BJ d +V(r) | [|r)
0 2m
1 \3~2 1
= (277)\2> f D(§)exp(— ﬁ{f drV¥(r + N&(7))
0
1
—i% df(T)~A(r+)\§(T),7'):|>. (33)
VBme”Jo

Here &(7), 0= 7=<1, £@0)=&(1)=0, is a closed dimensionless
Brownian path and D(£) is the corresponding conditional
Wiener measure normalized to 1. This measure is Gaussian,
formally written as

1
D(§) :exp(— %f dr’ %(T)
0

2
)d[f(-)]. (34)

It has zero mean and covariance

fD(f)f"(T)f”(T') = Oy min(7,7) - 77'),  (35)

where &“(7) are the Cartesian coordinates of &(7). In this
representation a quantum point charge looks like a classical
charged closed filament F=(r,&) located at r and with a
random shape &(7), 0<7<1, the latter having a spatial ex-
tension given by the thermal de Broglie length )\:ﬁ\s“,B/Fm
(the quantum fluctuation). The magnetic phase in Eq. (33) is
a stochastic line integral: it is the flux of the magnetic field
across the closed filament. The correct interpretation of this
stochastic integral is given by the rule of the middle point;
namely, the integral on a small element of line x—x’ is de-
fined by
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X +x’

fx d§~f(§):(x—x')~f< ), x-x"—0. (36)

X

We shall stick to this rule when performing explicit
calculations.” If there is no field, the generalization of the
Feynman-Kac formula to the many-particle system including
quantum statistics has been presented in a number of works;
see, e.g., [2,7,18]. When the field is present, the analysis
presented in the above works can be reproduced without
changes, the only difference being the inclusion of the addi-
tional phase factor corresponding to the vector potential (see
[19] in the case of a uniform magnetic field). We give here
merely the basic formulas resulting from these generaliza-
tions.

Filaments F=(r,&(7),0<7=<1) associated with single
quantum particles are generalized to Brownian loops

L=(r,y,q,X(7),

The g-loop £ consists again of a closed Brownian path

r(7)=r+\X(7),

now parametrized by the (dimensionless) imaginary time 7,
0=7=gq. The path is specified by its position r in space, a
particle species 7y, a number of particles ¢, and a shape X(7)
with X(0)=X(g)=0. The positions of the ¢ particles are lo-
cated at points r(k—1) on the path, k=1,...,q. The paths
X,.(7), r=1,...,n, corresponding to n different loops are in-
dependent random variables

0<r7<gqg. (37)

0<r=<gq, (38)

(XH(DX{(7)x=0, r#s, (39)

and identically distributed according to a normalized Gauss-
ian measure D(X) with covariance

DX (7)x = f DX)X*(1)X"(7")

[ .(T T') TT’:|
=6, min| —,— | - — |,
. agql &

mv=1,2,3. (40)

r=s,

The number g accounts for the quantum statistics of the spe-
cies v; it corresponds to grouping together ¢ particles that are
permuted according to a cyclic permutation of length g. The
set of all possible loops (37) will be called the space of
loops. It plays the role of an auxiliary classical-like phase
space where methods of classical statistical mechanics can be
used. Note that for Bose or Fermi quantum statistics, the N
particles are distributed into n loops L,, r=1,...,n, accord-
ing to their species and N=2"_,¢,. Maxwell-Boltzmann sta-
tistics are recovered if all ¢ loops for ¢>2 are disregarded.
Then a loop £ reduces to a filament F and the covariance
(40) reduces to Eq. (35) so that in this case there is a one-

We find it convenient to apply the middle point rule because it
correctly represents the quantum mechanical Gibbs weight in pres-
ence of a vector potential (divergenceless or not) [16]. Although we
shall not use the It prescription, we keep the terminology of the
Feynman-Kac-1t6 formula.
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to-one correspondence between filaments and particles.

The generalization of the Feynman-Kac-Itd formula to the
many-body problem induces loop self-interactions and inter-
actions between loops. The total energy of a system of n
loops has three contributions

n

D UL) + Upo( Ly, oo L) + Us(Ly, ..

r=1

L), (41)

The potential energy U, of n loops is the sum of pairwise
interactions between loops plus the action of external poten-
tials:

Upol(‘cl’ s ’[’n) = 2 e'yre'ysvc(‘cr"cx) + 2 Vext([’r)a

r<s r=1
(42)

where the interaction between two different loops is
Coulombic™:

VC(K,E’):fdafq ar 87— 7) (43)
0 0

1
e(7) - ' ()]
Here, 8(7)=2,__,.8(7—n) is the Dirac comb of period 1, 7
=7mod 1. Hence V.(L,,L,) represents the sum of the inter-
actions between the particles in the loop £, and the particles
in the loop L,, and the factor &(7-7') implements the
quantum-mechanical constraint of the equal-time interaction
inherited from the Feynman-Kac-It6 formula.
The term 2"_,U(L,) is the self-energy of the loops with

1
[e(7) —x'(7)]°
(44)

2 (q q
U(L) = 321 f dr J A7 (1= 8,3 87 =7)
0 0

This is the sum of the mutual interactions of the particles
within one loop. The factor (1-&,,7), where [7] denotes

the integer part of 7, avoids counting the proper self-energies
of the point particles; when g=1, U(L) vanishes. Finally,

" e
wcn):_iE#

=1 ,Bm,yrc2

qr
xf dX,(7) - A(r, + N, X,(7),a(7),
0

UA(‘CI’

(45)

where a(7) is the periodic extension of a(7), 0<7<1 to all
7. The phase factors in Eq. (45) arise from the interaction of
the particles with the vector potential. They are the flux of
the corresponding (periodic) magnetic field across the loops.

The following remark is in order. In Eqgs. (43)-(45), 7
integrals run from O to g as a consequence of grouping to-
gether in a single path X(7), 0< 7<g, all particles belonging
to a permutation cycle of g elements (see [7], Chap. V, Sec.

3A local regularization of the Coulomb potential has to be added
when dealing with Maxwell-Boltzmann statistics.
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Al). Such integrals can as well be reduced to the interval
0=7=<1 by means of the identity

q
f dX(n)F(X(7),a(7))
0
-1 1
=> | dX(r+m)FX(7+m),a(7). (46)
m=0 0
The notation in Egs. (43)—(45) is short and convenient.
The total Gibbs weight on the space of loops [including

the normal-order constant Dy Eq. (20)],

e_'BDN CXp|:— B(E U(‘Cr) + Upot(*cl’ s "Cn)

r=1

+ Us(Ly, ..., L, ):|, (47)

gives (up to normalization) the joint probability distribution
of n interacting loops in a realization of the electromagnetic
field having amplitudes a(7). Individual loops have Gaussian
weights defined by the covariance (40); thus, calculations of
averages on loops reduce in principle to applications of the
Wick theorem. One will also have to consider averages of
stochastic integrals involving the line elements dX*(7). This
is achieved by supplementing Egs. (39) and (40) with the
expressions

(dXM(DX (7 ))x = (§T<dx¢<r>x;(r'>>x)dr

T/
= 5”5#,(0(7'— ) - _>d7', for 7# 7',
q

(48)

(XX (D)x = 5,0, (%Xﬂr)x:(r»x)dr

T
5rv5,u.v( _>d7” for r=17, (49)
q

and

X = - s ) ant

—5”5/”(5(7' T)—— )deT (50)

These formulas are in accordance with the middle point rule,
which assigns the value 1/2 to 6 (7—7')| —» in Eq. (49) (see,
e.g., calculations in Appendix A of I).

At this point we see that computations of thermal proper-
ties of the system of charges and field corresponding to the
Hamiltonian (4) are entirely specified by the form of the
Gibbs weight (47) on the space of loops together with the
Gaussian distributions of the field amplitudes a(-) and loop
shapes X,(-). Indeed, the Gibbs weight (47) is a functional of
a(-) and X,(-), and Gaussian averages are uniquely charac-
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terized by the covariances (28), (29), (39), (40), and (48)-
(50). Of course, calculation rules in the auxiliary space of
loops have to be completed by appropriate formulas that re-
late quantities obtained in the loop formalism to the physical
information of interest such as thermodynamic potentials or
particle and field correlation. We shall not develop such for-
mulas in general here but will present an application of this
formalism to the determination of the particle density corre-
lations in presence of the field in Sec. VI.

V. EFFECTIVE MAGNETIC POTENTIAL

We are now in position to explicitly trace out the field
degrees of freedom to obtain the representation of the matter
statistical weight [¢ PHLk]_ . Eq. (31), on the space of loops.
The corresponding distribution is obtained by averaging Eq.
(47) on the field variables: namely,

e_ﬁDN eXp|:_ /32 U([:r):| exp[— :BUpot(El’ v aEn)]
r=1

X <eXP[— ﬂUA(‘Cl’ cee ’En)]>rad' (5 1)

From Eqgs. (45) and (32) one sees that
exp[—BUA(L,,...,L,)] is a phase factor linear in the field
amplitudes cy,(7) and ay, (7). Since (- ), is Gaussian, the
average can be performed with the help of the basic formula
(written here for a single mode of the field)

1
<eXp{if diif(na’(7) +f(T)a(T)]} >
0 rad

1 1
=6XP[—f de dT’f(T)<a(7)a*(7,)>radf(7',)j|-
0 0

(52)

To apply this formula we introduce the eigenmode expansion
(32) of the vector potential in Eq. (45):

n qr
—BUA(L,, ...\ L,) =i[2 (E f dX,(7) - uLA(T))aiA(?)
kN \r= 0

+ c.c.] , (53)

where uy, (7) collects the factors

dahe?\ 12
AV
Bm., R

—1k [r), +\,, X (T)]

uﬁ)\(T) =g

V2 wk
(54)
Application of the formula (52) gives
(expl— BUA(L1, - . L) Draa

qr
=exp[ EE dX,(7) - [ (D]

kKN =10
xE dX(T [ui;)\(r’)]C(k,F—F’):|. (55)
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We have used the fact that the covariance (27) is diagonal
with respect to k\ and C(k,7—17') is given by Egs. (28) and
(29). The remark made after Eq. (45) applies here also. In
order to use Eq. (52), all 7integrals can as well be reduced to
the interval 0<7<1 by means of the formula (46). Then
C(k,7-7') is the periodic continuation of C(k,7—7),
0<r,7=<1. Since u’y,(7)==[uj, (D], it is clear that by
changing k— -k, r—s in Eq. (55) only the even part of
C(k,7—7") contributes. One finds from Eq. (28), for 7#0,

ol ) = 510+ Clk )]

1
=ny cosh(Bhw,7) + Ee_ﬁﬁ“’klﬂ

~ cosh[ Bhwy(|1-1/2)]
T sinh(Bhwy2)

(56)

whereas from Eq. (29),
Coven(k,0) =ny, 7=0. (57)

Introducing the explicit form of uy,(7), Eq. (54), Eq. (55)
becomes

<exp[_ BUA(‘C'ls e 9£n)]>rad
4athe., e &Pk g2(k)
= Yr s g lk (r,—rg 5{r k
exp( ros= 1 Ny my, (277)% 2wk ( )

x{ f dX*(7) f dX!(7 )™ DX o0 X))
0

><Ceven(k,"f— ?’)] ) . (58)

The transverse delta function é‘;w(k) results from the polar-
ization sum

2

k,U«
mov

2 CRNCKN = 5;w
A=l

k2

= 8,,(K). (59)

There is an important point to deal with before proceeding
to the determination of the effective magnetic potential. The
function Cgyen(k,7) is continuous except for the point 7=0
where it has the jump

1
lim Ceven(k’ T) - Ceven(k’o) = E (60)
7—0

Although this point is of zero measure with respect to the
Lebesgue measure, it cannot be disregarded when dealing
with stochastic integrals. Indeed, when averaging over
loops, the singular part 5(7—7’) in the covariance of stochas-
tic differentials (50) will precisely select the value of
Cevenk,7—7') at 7=7'". As an illustration, one can consider
the X average of Eq. (58) to linear order in the expansion of
the exponential: namely,
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" Arhe. e Pk (k) .
S 7,7, 3g ( )ezk(r,—rx) & (K)
P \/m,/rmys 2m)° 2wy

qr ds
) < f dx*(7) f ax’( 7")eik'[}‘vrxr(r)"‘VAX’r(T,)]>
r s
0 0

Xceven(k7F_ a.:,) (61)

X

The average (---)x in (61) can be calculated by means of

Wick’s theorem, evaluating all contraction schemes. Con-
tractions involving the product of stochastic differentials
yield the term

qr qs !
f j (dXt(n)dX( T')>X<€lk'[)‘7rx’(7)_)\“/YXS(T )]>x
0o Jo

XCovenlk, 7= 7")

“’335#4 drf dr<5(r 7)-— )

X (M X DM Cenlk T= 7). (62)

In view of Eq. (60) the contribution of 8(7—7") in Eq. (62) is

5rx5/,WQrCeven(k>0 5rv6,u.1/ lim Ceven(k T T)

=7

rv ,lLV
(63)

Then the contribution of the last term of Eq. (63) to the
complete expression (61) gives

2 n
ARV SO _
myf( m% p )] —ﬁz q,d, = BDy.

(64)

n 277ﬁ
ﬁ% qr[—

The last line follows from the fact that we have n loops, each
of them containing g, particles of species v,, so that Dy is the
constant (20) arising from the normal order rule in the
bosonic integral. At linear order, this constant exactly com-
pensates the term —BDy occurring in the exponent of the
total Gibbs weight (31). We conclude from this observation
and from Eq. (62) that we can as well use the continuous
extension of Ceye,(k,7), Eq. (56), to 7=0 and suppress the
constant Dy in Egs. (31) and (51). A proof that this statement
holds for all orders is given in Appendix A.
We can now cast the field average (55) in final form

e_IBDN<eXp[_ BUA(L:I? .. ,Ln)]>rad
n 2
= H exp(— 2erm(£r»£r))
r=1

X exp(— B>, eyreme(ﬁr,ﬁs)) (65)

Here we have introduced the effective magnetic potential
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1 dk

. ; eik-(rr—rs)
B\/myrmysc (2m)

Wm(ﬁr’ﬁs) =

4
X J dX*(7)e kM XD
0

4y ,
Xf dXXV(T’)e"k')‘*/.;XX(T)
0
47g*(k

» Wiz( )

To obtain Egs. (65) and (66), we have separated in Eq. (58)
the terms r=s referring to the self-energies of loops from the

terms r#s giving rise to pairwise loop interactions. The
function

& (KOkT-7).  (66)

Aok
- “ph® _
Qk,7) = 2 sinh(\yk/2) coshApk([ 7 = 1/2)]

a ()\ hk> e)‘phk(‘ﬂ_l) + e_)\phklﬂ
“\ 2 1 —e Mok

. =1, (67)

is, up to the factor Ak, the even part (56) of the covariance
of the free photon field written in terms of the photon ther-
mal wavelength \;,=B#hc. In view of the discussion follow-
ing Eq. (60) and the result of Appendix A, it is understood
that this function is given by the formula (67) including the
point 7=0 and the factor ¢ PPN has been canceled on the
right-hand side of Eq. (65). The 7periodic function Q(k,7),
Q(k,0)=Q(k, 1), is normalized in such a way that it equals 1
when the electromagnetic field is classical:

lim Q(k,7) =1. (68)

)\ph—»O
In this limit, the magnetic potential W, (L,, L) reduces to
formula (82) of T where radiation has been treated classically.
Hence all effects due to the quantum nature of the photon
field are contained in the sole function Q(k, 7).

The Gaussian integration of the radiation field has pro-
vided the sum of pair potentials (65) between loops as in
paper I. Then, thermal averages of particle observables cal-
culated with the normalized reduced density matrix p; g, Eq.
(10), have a simple structure when expressed in the system
of loops. Combining Egs. (51) and (65), one forms the com-
plete effective Gibbs weight (up to normalization)

n 2
exp[— ﬂ(E u(L,) + %"‘Wm(ﬁr,ﬁr))]
r=1

X exp[— ,B( Upoi( Ly, ..., L)

r<s

+ eyreyswm(c,,,cs)” , (69)

comprising one-loop and two-loop interactions. This struc-
ture allows the use of standard diagrammatic methods of
classical statistical mechanics, like Mayer graph expansions.
This is illustrated in the next section, where large-distance
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asymptotic particle correlations are investigated.

Note that as in paper I, it is unlikely that p; r can be cast
in a convenient operator form pL,RMe‘BHeﬁ({pi’rf}) depending
on the original quantum-mechanical momenta and positions
{p;,r;} of the particles. Again, the magnetic interaction W,,,
Eq. (66), is a two-times functional of the Brownian loops
reflecting the photonic bath environment. It lacks the equal-
time constraint necessary to come back to a simple operator
form by using the Feynman-Kac-Itd formula backwards [15].

VI. ASYMPTOTIC PARTICLE CORRELATIONS

We determine the behavior of the particle density correla-
tion in presence of the thermalized quantum electromagnetic
field in the two regimes (2) and (3) discussed in the Intro-
duction.

A. Partial screening of the Coulomb interaction by thermal
photons in the range A.,,(<Ap, <r

In the regime (2), r is larger than any typical length of the
model. The asymptotic analysis of the correlation is based on
the large-distance behavior of the part of the interaction”

W(F ., Fp) = WA F s Fiy) + Wi (Fo Fp), (70)

which is responsible for the power-law decay. In this for-
mula, W,(F,,F) is the residual interaction (due to quantum
fluctuations) that is left when Coulomb divergences are re-
summed in Mayer graphs [see formula (28) of I]. It has the
asymptotic dipolar form

1 1
Wc(}—a’fb) -~ f dsaf dsb[g(sa - Sb) - 1][)\ya§a(sa) . Vra]
0 0

|ra_rb| —®

1
X[)\ybgb(sb) : Vrb] |I' r s
a— 'b

(71)

It turns out that the large-distance asymptotics of
W (Fy, Fp), determined by the small-k behavior of the inte-
grand of Eq. (66), are also dipolar. Indeed, we first observe
that Q(k,7) is an analytic function of k and has the small-k
expansion

2
Qlk,) =1+ (—)\P;L){Tz —|d+ é] +O0((\wh)Y. (72)

Inserting this into Eq. (66) gives

22
Wm(fwfb) -~ Wm(fa’j:b) - /_h P
Bym, myc
L f !
i a Th) —— d&™
2m° 2 ), 4

1
< dgzw){(r—r')z—h—rw+1],
0 6

4Exchange effects are short ranged and play no role here. Only
one-particle loops—i.e., filaments—are considered.
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|ra_rb| — . (73)

The first term on the right-hand side of Eq. (72) leads back to
the effective magnetic potential W,,, associated to the classi-
cal electromagnetic field [formula (22) of I]. In the second
term, the k2 factor in the integrand of Eq. (66) has been
canceled by the term of second order in k of Eq. (72) and we
have set k=0 in the exponentials of the paths &,(7) and
&,(7'). In this way, we have retained the lowest-order singu-
lar part in k in the last term of Eq. (73). This part is —k*k"/k>
coming from the transverse & function (59). The double sto-
chastic integral in Eq. (73) is calculated with the result

1 1
f drf dr' &(n&(7)
0 0

& [(7‘— 7)Y —|7- 7"|+l

ot 6
1 1
:2] d’TJ dr'[8(r—7") = 1]&/(n&(T). (74)
0 0
By virtue of the identity
\2
P e e VS (75)
BNmgmyc

Eq. (73) eventually reads
1 1
Wm(]:a’fb) -~ Wm(fa;]:b) - )\a)\bf de dr’
0 0

X[o(r—7) = 1]§(n)&,(7)

dk . 4akH kY
X (e .6
f Qm° IS 76

Performing the Fourier transform, we see that, up to the sign,
the second term on the right-hand side of Eq. (76) is identical
to the asymptotic tail (71) of W.. The latter is therefore
exactly canceled in the total interaction W(F,,F,)
=WAF,, Fp) + Wil F,, Fp) as [r,—1,| — . We conclude that
in the region r>\;, the dominant part of this algebraic Cou-
lombic tail is screened by thermalized photons. The tail of
the interaction

W(fa,fb) ~ Wm(fa’fb)’ |ra— rb| — 0, (77)

reduces therefore to the pure unscreened effective magnetic
current-current interaction W, (F,,F,) induced by the clas-
sical field, whose asymptotic dipolar form is given by for-
mula (25) of paper I.

We can now follow the asymptotic analysis presented in
Sec. V of paper I to show that the tail of the correlation
exhibits again a generic 7 decay. All statements made there
regarding the magnetic potential with the classical field W,
hold for the magnetic potential with the quantum field W,,,.
The transversality argument used to show the vanishing of
the convolution element, formula (50) of paper I, works
identically provided that the rotationally invariant function
Q(k,s,—s3), Eq. (67), is included in the definition of the
tensor 7"2(k,s,s,), formula (51) of paper I. This tensor still
transforms in a covariant manner under rotations of Kk, so that
its contraction with the transverse ¢ function cancels formula
(50) of paper 1. Similar modifications done in the other con-
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volution elements mentioned after formula (51) of paper I
imply that W, does not contribute to the VV-convolution
chains occurring in formula (49) of paper I. The dipolar char-
acter of the large-distance interaction }V then ensures that the
correlation function decays as r~%. However, the amplitude of
this decay is now affected by the partial screening (77) which
is due to the quantum nature of the photonic bath.

In order to illustrate this point, let us determine the coef-
ficient of the 7~° decay at lowest order in %. Proceeding word
for word as in Sec. V of paper I, one sees that this decay is
eventually governed by

1
E[_ 3671672W(f1,f2)]2, (78)

with root points dressed by classical correlations and evalu-
ated at lowest order in 7. Since W=W,+W,, depends on #
solely through the couplings A,k in W, and Ak, Ak in
W, evaluating these potentials at lowest order in 7 amounts
exactly to selecting their large-distance (k—0) asymptotic
behavior. The Coulombic dipolar tail of W. is therefore can-
celed by the photon-induced partial screening (77), and the
large-distance behavior of the two-particle truncated correla-
tion in the semiclassical regime (high temperature or lowest
order in 7) reads

hipt .
pT(’Ya’ra’ ‘y};’rb) -~ K 2 |:J drnTl(’Ym 71’r):|

Y172

X |:J drnCTl(YZ’ yb’r):|

2 2
€y1€y2

B, ¢ B, [r,—1y|*

(79)

This corresponds to omitting the Coulombic part of the cor-
relation calculated in I, formula (53) . Only the current-
current interaction induced by the thermal motion of the par-
ticles contributes to the tail (79) in the regime r> \,.

The analysis of the particle-charge and charge-charge cor-
relation function can be performed in the same way. As re-
called in formulas (46) and (47) in paper I, the Mayer bonds
are built from a rapidly decaying resummed potential @,
and the quantum asymptotically dipolar potential W, Eq.
(70). When the charge observable is considered, following
the dressing method described in Sec. VI.A.3 of [7], one sees
that an additional screening factor involving ®,.. occurs at
the root points of the graphs. This generically weakens the
decay of the particle-charge correlation to =8 and that of the
charge-charge correlation to 7'°. As for the particle-particle
correlation (79), the amplitudes of the tails are again deter-
mined by W?. Because of the asymptotic cancellation of the
Coulombic part in W [see Eq. (77)], these amplitudes also
inherit the small relativistic factor (Bmc?)2.

B. Predominance of electrostatic correlations
in the range A, <<r<<A,,

Let us now focus on the second regime A, <r<<Ay; i.e.,
we consider the correlation between particles that are sepa-
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rated by distances much smaller than the wavelength of ther-
malized photons. We first give a rough estimate of the order
of magnitude of W,,(F,,F;) relative to W.(F,,F,). With
this aim it is convenient to scale the Fourier variable as
k—K/r, r=r,—r,, yielding, in Eq. (66),

Wm(]:a’]:b)

1 1 dk
Qm?°

BVmm,c* r

1
X f dE( )OI
0

1
ikff dgg(T)eik~(>\a/r)§a(r)
0

47g?(klr)

X 2

Sﬁv(k)Q(k/r,T—T'), f=-. (80)

N =

Since )\ph/ r is now a large number, it is not allowed to ex-
pand Q(k/r,7—7'") for small k, but we note from Eq. (67)
that this function is of the form A,/r times a bounded func-
tion of N,/r. Therefore Q(k/r,7—7') cannot grow faster
than A,/r. Then the order of magnitude of W,, is at most

)

/
BNmmy,c’r r

Wi =

On the other hand, one sees from Eq. (71) that the order of
magnitude of W, for r>N\, is

A
W, ~ =52 (82)
r
Combining Egs. (81) and (82) together with Eq. (75) gives
szwco(L). (83)
Aph

Hence, in the range (3), the total interaction
W=WC+Wm=WC[1+0<L>] (84)

Noh

is given by its Coulombic part up to a small correction. It is
therefore expected that all predictions on correlation decays
are the same as those derived from pure electrostatics up to
terms that vanish as r/A,, — 0. This reasoning is mathemati-
cally not complete since when Eq. (80) is used as a bond in
Mayer graphs, loop averages and wave number Fourier inte-
grals have to be performed first and shown to yield finite
values. As an example we establish in Appendix B the pre-
cise estimate

3
-
<Wr2n(~Fasfb)>§a,§b ~ 120A<W3(}—a’fh)>§a,§h<)\_) , A<,
ph

(85)
as Aoy /r—0, No/r, N/ r—0, and N,/ r— o0, implying
\3
<Wi1(fwfb)>§a,§b= <W3(fwfb)>§a,§b0(<)\_) ) (86)
ph

in the range (3). Thus the square fluctuation of W, [entering,
e.g., in Eq. (78) for the evaluation of the correlation] is neg-
ligible compared to that of W.,.
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VII. CONCLUDING REMARKS

In this paper, we have presented a formalism adapted to
the study of nonrelativistic matter in thermal equilibrium
with the photon field. In the joint functional integral repre-
sentation of matter and field, the field variables can be inte-
grated out, yielding an effective classical-like statistical de-
scription of the state of matter. As a first application, we have
shown that the cloud of thermalized photons participates in
the screening of the Coulomb potential by suppressing the
dipolar electric contribution to the r~® tail of the particle
correlations, as illustrated in Eq. (79). In electrolytes at room
temperature, both the de Broglie and classical Debye lengths
are in the range of 107! m (a few angstroms). Moreover, the
parameter \Bimic? is of order ~10° so that A, =107 m; see
Eq. (1). It is known from [20] that the crossover between
Debye-Hiickel (exponential) screening and quantum (alge-
braic) screening occurs at distances of about 60 times the
Debye screening length. Consequently, the further reduction
of the amplitude of the correlation tail by photon screening
occurs at even much larger distances and with an exceed-
ingly small amplitude. This makes the phenomenon probably
hardly observable in such systems. At the conceptual level, it
is, however, an interesting effect of the thermal radiation
that, to our knowledge, has not been exhibited in the litera-
ture before.

The effective magnetic potential W, Eq. (66), defined in
Sec. V, embodies in an exact manner orbital diamagnetic
interactions: namely, interactions between currents due to
thermal motion of charges. This current-curent interaction is
at the origin of the correlation tail (79). The order of magni-
tude of W, is by a factor (Bric?)~! smaller than that of the
electrostatic potential. One should, however, be aware that
W, is not the unique source of relativistic effects. A prelimi-
nary investigation [21] shows that the Pauli coupling terms
of spins with the field contribute to the correlation tail at the
same order (Bmc?)~? as that found in Eq. (79) as a conse-
quence of pure orbital magnetism. Moreover, the nonrelativ-
istic form of the particles kinetic energy in the Hamiltonian
(4) has itself ¢=? corrections (e.g., spin-orbit interaction, Dar-
win term) that will likely contribute to the asymptotic form
of the particle correlations. Hence a complete determination
of the particle correlations tails at order (Bi7c?)~> will require
further investigations.

The tools developed in this paper lend themselves to a
detailed microscopic study of various problems. In view of a
Brief Report [22] questioning the findings of paper I on elec-
tromagnetic fluctuations, we aim to revisit the problem in the
case of a quantized field. Thermal broadening of spectral
lines and retardation effects on van der Waals forces between
recombined atoms or molecules in a medium at finite density
and temperature could conveniently be studied within this
formalism. Indeed, the latter situations involve quantum-
mechanical binding which is not perturbative in the matter-
field coupling constant. Standard many-body Feynman dia-
gram techniques would necessitate infinite resummations to
describe bound-state formation, whereas cluster expansions
in the form presented in [23] (properly generalized to include
the full electromagnetic coupling) give a direct access to re-
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combined entities together with their interaction with the ra-
diation field. Finally the theory of the Casimir effect has
received much attention recently. It is now conceivable to
elaborate a full microscopic theory of this effect by extend-
ing the analysis presented in [24] to TQED. We plan to ad-
dress these questions in future works.
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APPENDIX A

As seen in the first-order calculation leading to Eq. (64),
the compensation of the constant D, comes from the particle
self-energies r=s. It is therefore appropriate to single out in
the exponent of Eq. (58) a diagonal r=s term and write its X,
average as (dropping now the particle index r)

3 q q
=<exp|:—BJ (Z7S3L dX'“(T)JO dx¥(7")

)}F(X)> (A1)
X
4%62&6“

m

2w ,LLV(k)CSVCn(k’ T) .
k

X e —ik-A(X(n)-X(7") F

where we have set, for brevity,

Lk, 7) = (A2)
In Eq. (A1) F(X) is a functional of X containing all possible

other dependences of X in Eq. (58). Expanding the exponen-
tial in Eq. (A1) gives

s (—B)”(ﬁ ﬂL)
j=1

2m)?

n q q ,
. (H dx*i(;) f dx"i(7] )e""‘f“"(f_/)-X(Tj)])
=1 Jo 0

(A3)

XF(X) (HFMV kj. 7))
X

j=1

We call a matched contraction the contraction of a pair of
stochastic differentials
(dXHi(7)dX"i(7j))x = 8, (87— 7)) — Vg)dTydT},
where times have the same index j. It is clear that the
5(7'-—7") occurring in matched contractions will evaluate

# ,,( 77 - ;) at 7;=7;. Such matched contractions can only
arise from the product H" _dX¥i(7,)dX" (T) in Eq. (A3).
Contraction between a dlfferentlal from thls product with a
differential occurring in F(X) or contractions within F(X)
will always involve two time arguments belonging to differ-
ent C,., functions. They are of the type
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<f dX'”'(T)J X" ()T (k. 7= )T, (k ',&—&’)>
X
fdrf do-(&(r o) - ) w (K T=T)

XL (K, 5= )

1
= qlf dTFﬂﬂr(k,T— ?,)Fﬂvr(k,,T— 6',)
0

1 1
_fo dTFML,(k,T)fO doTM,,,(k',O')]

For such contractions, Cgeq(k, 7) can be treated as a continu-
ous function everywhere since in integrals of the type (A4)
the discontinuity (60) at the single point 7=0 is irrelevant.

To evaluate the X average in Eq. (A3), we select therefore
terms having exactly m matched contractions, 0 <m <n. Be-
cause of the invariance of the product under exchange of its
factors, there are n!/m!(n—m)! such terms giving the same
contribution. This leads to

(A4)

n

/= E( ,8)"2 n!

oo M (n—m)!

J (277)3|:f dTJ dr; F,u,u(
X ( 87— 7)) - l) } (ﬁ e‘ikj"\[X(Tj)—X(T})])
J J q i

X[BX) "™ F(X) )

unmatched

(AS)

with

dk (1 4 . ,
B(X) =f %f dX’U‘(’T)f dX"(7)e KNX(D-X(7)]
(2m): 0 0

XTI, (k7= 7). (A6)

The square brackets in Eq. (A5) are the result of m matched
contractions. In the average (***)ynmatched» @ll matched con-
tractions are omitted. In Eq. (A5), we further expand the
product of [&(7;—7/)-1/gq] factors and perform the
o-function integrations, leading to

m

2( B)” n! m!

oo Ml (m=n)1 25 N(m=1)!

1
( f 2m)? Ptk 0))

S <[B(X)]n_m[D(X)]m_lF(X)>unmatcheda

(A7)

with
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1 J de dT e —ik-N[X(D-X(7")]
@2m)?

wulk, T=T)

D(X)=

(A8)

Finally, rearranging the sums yields

I= exp( Ba J Qi ulk 0))<e-B<X> POFX)) unmatchea:-
(A9)
It is seen from the definition (A2) that Bgf (;’k)gr L(k,0) is
equal to the constant —gd plus the contribution of Cgyepn(k, 7)
extended by continuity at 7=0, exactly as in Egs. (62)—(64).
Since the loop shapes X,, r=1,...,n, are independent ran-
dom variables, the same calculation can successively be car-
ried out for n loops, providing a factor e’V that cancels the
factor e™PPN due to normal ordering in Eq. (51). Performing
the procedure (A1)—(A9) backwards after this cancellation
thus shows the validity of formula (65), where the effective

magnetic potential W, Eq. (66), is defined with the continu-
ous function Q(k,7), Eq. (67), for all 7.

APPENDIX B
The £,,£, average of W2

variables q,=Kk,r and q,=k,r

L e e B
(Bmac?)(Bmye?) r* )

reads in terms of the scaled

WE(FnF e &, =

r’r’r r
(B1)

where we have introduced the function of dimensionless pa-
rameters

R

s

’ >
r r r r

:J dq13 dL3 i(q1+qy)+
qlsr/}\cul (27T) qz\r/)\ ut (27T)
(477)2
X 55.(q1) 8:5(q2)
e "

X eiq1'[(Xa/r)fa(T)—O\b/r)fb(f’)]ei'h'[()\a/r)§a(0)—(>\b/r)§b(0')]

1 1 1
X j dé*(7) f dé)(r) e 1hdE(o) J dé) o")>
0 0 0 gaygb

XQ(@,T— T’)Q(Q,O'—OJ). (B2)
r r

The ultraviolet cutoff functions g(g;) and g(g,) have been
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replaced by the appropriate restrictions of the domains of
integration. Then

F(M) — lim F(M ﬂ’ﬁ’ﬂ>
/

b
r Neut/ TN/ TN/ r—0 r r r r

dq, dq, i( s (477)2
S e O ()8 g)
em)? ) @m) gy de2

1 1 1
x[< f e f ag(7) f d£5(0)
0 0 0
1
[aeion) oft “Jol#0-0)|
0 r r

(B3)
The &,,&, average is evaluated according to the rule (50).
Using the 7 periodicity of the function Q(k,7), the square
brackets in Eq. (B3) become

1
%%{ f er(@,T>Q<@,T)
0 r r
1 1
- [l ara{ ) [ o)
0 r 0 r

=58 ()\ph/r)ZqIQZ
= Cnero) 2(1- e—(Kph/f)th)(l — e
< 1 = e~ pn/N)(q1+42)

e~ Op/r)ar _ e—(xph/r)qz) }
- ~1
A\pn/1)(q1 + q2) A\pn/T)(q1 = 2)

172

ph/f)qz)

A
MNph G192 Aph (B4)

T Onel r 2(%‘“]2)’ r

as shown by an explicit calculation of the 7 integrals. Insert-
ing Eq. (B4) into Eq. (B3) and performing the vector sums
leads to

A A
F<_Lh) NA_Lh, (BS)
r r
with
2
dql dqz ’('11*"12)"(477)
em’ ) em* e
2
. 1
x((qlzqf) —3) <o, (B6)
919> 2(q, +q)

Introducing the representation 1/(g,+q,)=[gdte™"4192), the
q, and q, integrals can be performed independently and each
of them behaves as #~2 as t— %, assuring the convergence of
the r integral. Since <W§(]—‘a,fb)>§w§h~ N2\Z/1207°  as
N./r, N/ r—0, one obtains Eq. (85).

041125-13



BUENZLI, MARTIN, AND RYSER

[1] A. Alastuey, F. Cornu, and A. Perez, Phys. Rev. E 49, 1077
(1994); 51, 1725 (1995); A. Alastuey and A. Perez, ibid. 53,
5714 (1996).

[2] F. Cornu, Phys. Rev. E 53, 4562 (1996); 53, 4595 (1996);
Phys. Rev. Lett. 78, 1464 (1997).

[3] A. Alastuey, V. Ballenegger, F. Cornu, and Ph. A. Martin, J.
Stat. Phys. (unpublished).

[4] A. Alastuey, F. Cornu, and Ph. A. Martin, J. Chem. Phys. (un-
published).

[5] V. Ballenegger and Ph. A. Martin, Physica A 328, 97 (2003).

[6] A. Alastuey, Physica A 263, 271 (1999).

[71D. C. Brydges and Ph. A. Martin, J. Stat. Phys. 96, 1163
(1999).

[8] S. El Boustani, P. R. Buenzli, and Ph. A. Martin, Phys. Rev. E
73, 036113 (2006).

[9] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Pho-
tons and Atoms, Introduction to Quantum Electrodynamics
(Wiley, New York, 1989).

[10] L. Bulgiaro, J. Froehlich, and G. M. Graph, Phys. Rev. Lett.
77, 3494 (1996).

[11] G. M. Graf, Docu. Math. extra volume ICM, 153 (1998).

[12] E. H. Lieb and M. Loss, Commun. Math. Phys. 258, 675

PHYSICAL REVIEW E 75, 041125 (2007)

(2005).

[13]J. W. Negele and H. Orland, Quantum Many-Particle Systems,
Frontiers in Physics Series Vol. 68 (Addison-Wesley, Reading,
MA, 1988), Sec. VL

[14] G. J. Papadopoulos, in Path Integrals, edited by G. J. Papa-
dopoulos and J. T. Devresse (Plenum, New York, 1978).

[15] R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path
Integral (McGraw-Hill, New York, 1965).

[16] G. Roespstorff, Path Integral Approach to Quantum Physics:
An Introduction (Springer-Verlag, Berlin, 1994).

[17] B. Simon, Functional Integration and Quantum Physics (Aca-
demic Press, London, 1979).

[18] Ph. A. Martin, Acta Phys. Pol. B 34, 3629 (2003).

[19] E. Cornu, Phys. Rev. E 58, 5268 (1998).

[20] A. Alastuey and Ph. A. Martin, Phys. Rev. A 40, 6485 (1989).

[21] S. El Boustani, Master’s thesis, Swiss Federal Institute for
Technology, Lausanne, 2005.

[22] B. Jancovici, Phys. Rev. E 74, 052103 (2006).

[23] A. Alastuey, V. Ballenegger, F. Cornu, and Ph. A. Martin, J.
Stat. Phys. 113, 455 (2003).

[24] P. R. Buenzli and Ph. A. Martin, Europhys. Lett. 72, 42
(2005).

041125-14



